Bijections for a class of labeled plane trees

نویسندگان

  • Nancy S. S. Gu
  • Helmut Prodinger
  • Stephan G. Wagner
چکیده

We consider plane trees whose vertices are given labels from the set {1, 2, . . . , k} in such a way that the sum of the labels along any edge is at most k + 1; it turns out that the enumeration of these trees leads to a generalization of the Catalan numbers. We also provide bijections between this class of trees and (k + 1)-ary trees as well as generalized Dyck paths whose step sizes are k (up) and 1 (down) respectively, thereby extending some classic results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unified Bijections for Planar Hypermaps with General Cycle-length Constraints

We present a general bijective approach to planar hypermaps with two main results. First we obtain uni ed bijections for all classes of maps or hypermaps de ned by face-degree constraints and girth constraints. To any such class we associate bijectively a class of plane trees characterized by local constraints. This uni es and greatly generalizes several bijections for maps and hypermaps. Secon...

متن کامل

Bijections for 2-plane trees and ternary trees

According to the Fibonacci number which is studied by Prodinger et al., we introduce the 2-plane tree which is a planted plane tree with each of its vertices colored with one of two colors and qqppppppppppppppppp -free. The similarity of the enumeration between 2-plane trees and ternary trees leads us to build several bijections. Especially, we found a bijection between the set of 2-plane trees...

متن کامل

Enumeration of trees by inversions

Mallows and Riordan “The Inversion Enumerator for Labeled Trees,” Bulletin of the American Mathematics Society, vol. 74 119681 pp. 92-94) first defined the inversion polynomial, JJ9) for trees with n vertices and found its generating function. In the present work, we define inversion polynomials for ordered, plane, and cyclic trees, and find their values at 9 = 0, t l . Our techniques involve t...

متن کامل

Generalized Stirling permutations, families of increasing trees and urn models

Bona [6] studied the distribution of ascents, plateaux and descents in the class of Stirling permutations, introduced by Gessel and Stanley [14]. Recently, Janson [18] showed the connection between Stirling permutations and plane recursive trees and proved a joint normal law for the parameters considered by Bona. Here we will consider generalized Stirling permutations extending the earlier resu...

متن کامل

A bijection for triangulations, quadrangulations, pentagulations, etc

A d-angulation is a planar map with faces of degree d. We present for each integer d ≥ 3 a bijection between the class of d-angulations of girth d and a class of decorated plane trees. Each of the bijections is obtained by specializing a “master bijection” which extends an earlier construction of the first author. Bijections already existed for triangulations (d = 3) and for quadrangulations (d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010